

Section VI: Technical Perspective of the NESDIS Cloud Framework

NESDIS Cloud Summit

21 November 2019

Kathryn Shontz & Manan Dalal

NESDIS.Cloud@noaa.gov

Agenda

- 1. Motivation
- 2. NESDIS Cloud Framework Lexicon
- What Do We Mean By "Framework"?
- 4. The NESDIS Enterprise Cloud Framework
- 5. Benefits of the NESDIS Cloud Framework
- 6. Cloud Framework Use Cases
 - a. Secure Ingest Workflow
 - b. Satellite Data Workflow
 - c. Science Development Workflow
 - d. Data Access & Retrieval
- 7. Future Innovations & Studies
- 8. Notional Roadmap
- 9. Looking Toward a NESDIS Cloud Future
- 10. Q&A

Motivation

Implement
cloud-enabled
end-to-end ground
service capabilities
that are secure,
scalable, lifecycle
cost effective, and
data source
agnostic

NESDIS Cloud Framework Lexicon

- Framework: enables a set of services to work together to deliver the mission value
- **Service**: how to meet the core NESDIS IT functions
- **Tool**: cloud software application(s) used to implement the service

- Framework -

What Do We Mean by "Framework"?

Benefits of the NESDIS Cloud Framework Architecture

- **Secure** FISMA compliant FedRAMP Moderate cloud services
- Fault-Tolerant redundant and highly available services lead to robust, faulttolerant applications
- Scalable capacity to accommodate all current and future workloads
- **Data Agnostic** enable any data type and workflow within the framework
- **Decoupled** services are independent of each other and are interchangeable
- Cloud Agnostic workloads and services run in any cloud service provider
- Resources On-Demand rapid provisioning of cloud framework services based on business needs
- Agile support agile processes with DevOps

Cloud Framework Use Case: Secure Ingest Workflow

Cloud Framework Use Case – Satellite Data Workflow

8

Cloud Framework Use Case – Science Development Workflow

Cloud Framework Use Case – Data Access & Retrieval

10

Future Innovations & Studies

Cloud Native Data Format

Objective: Explore Zarr as the cloud-native data format to facilitate improved science data usability.

Automation

Objective: Implement an enterprise automated Continuous Integration (CI) and Continuous Deployment (CD) pipeline.

Data Visualization

Objective: Evaluate the performance of data visualization tools.

NESDIS Cloud Framework Notional Roadmap

2020 2021 2022 2023 2024 OSIS - Cloud Framework 1.0 Himawari-8 - Cloud Framework 1.1 MetOp-C - Cloud Framework 1.2 Legacy Migration - Cloud Framework 1.3 DACS Future Capacity - Cloud Framework 1.4 Science Development - Cloud Framework 2.0

Looking Toward a NESDIS Cloud Future

Q&A

Contact NESDIS.Cloud@noaa.gov

BACKUP SLIDES

Science Algorithm Evaluation Summary

Program	Algorithm	LOE to Prepare for HPC Framework	LOE NESDIS Cloud Framework Integration	Science Quality Met?	Latency Req. Met?
LEO	CloudMask Derived Motion Winds MiRS SST ATMS SDR VIIRS SDR Requirement: 15 Minutes	2-3 Weeks	72 Staff Hours	((
GEO	CloudMask - Requirement: CONUS - 5 Min, Full Disk - 15 Min, Mesoscale - 5 Min Derived Motion Winds - Requirement: CONUS - 15 Min, Full Disk - 60 Min, Mesoscale - 5 Minutes AHI ACSPO SST - Requirement: 10 Minutes AHI Rainfall Rate - Requirement: 10 Minutes	2-3 Weeks	72 Staff Hours	>	()
NCEI	Gridded 5km Daily Temp/Precip Dataset - Requirement: 24 Hours Global Historical Climatology Network - Requirement: Monthly Space Weather - Requirement: 30 Seconds	2-3 Weeks	TBD	TBD	TBD

